Back to Search Start Over

Risk adjusted EWMA control chart based on support vector machine with application to cardiac surgery data

Authors :
Muhammad Noor-ul-Amin
Imad Khan
Ali Rashash R. Alzahrani
Amel Ayari-Akkari
Bakhtiyar Ahmad
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract In the current study, we demonstrate the use of a quality framework to review the process for improving the quality and safety of the patient in the health care department. The researchers paid attention to assessing the performance of the health care service, where the data is usually heterogeneous to patient’s health conditions. In our study, the support vector machine (SVM) regression model is used to handle the challenge of adjusting the risk factors attached to the patients. Further, the design of exponentially weighted moving average (EWMA) control charts is proposed based on the residuals obtained through SVM regression model. Analyzing real cardiac surgery patient data, we employed the SVM method to gauge patient condition. The resulting SVM-EWMA chart, fashioned via SVM modeling, revealed superior shift detection capabilities and demonstrated enhanced efficacy compared to the risk-adjusted EWMA control chart.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.4661e756662e406c8464f2b6f473b97f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-60285-2