Back to Search Start Over

An efficient segment anything model for the segmentation of medical images

Authors :
Guanliang Dong
Zhangquan Wang
Yourong Chen
Yuliang Sun
Hongbo Song
Liyuan Liu
Haidong Cui
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract This paper introduces the efficient medical-images-aimed segment anything model (EMedSAM), addressing the high computational demands and limited adaptability of using SAM for medical image segmentation tasks. We present a novel, compact image encoder, DD-TinyViT, designed to enhance segmentation efficiency through an innovative parameter tuning method called med-adapter. The lightweight DD-TinyViT encoder is derived from the well-known ViT-H using a decoupled distillation approach.The segmentation and recognition capabilities of EMedSAM for specific structures are improved by med-adapter, which dynamically adjusts the model parameters specifically for medical imaging. We conducted extensive testing on EMedSAM using the public FLARE 2022 dataset and datasets from the First Hospital of Zhejiang University School of Medicine. The results demonstrate that our model outperforms existing state-of-the-art models in both multi-organ and lung segmentation tasks.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.465e8c35c644c0a1c4104eb87f2d97
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-70288-8