Back to Search Start Over

SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0

Authors :
Matteo Calabrese
Martin Cimmino
Francesca Fiume
Martina Manfrin
Luca Romeo
Silvia Ceccacci
Marina Paolanti
Giuseppe Toscano
Giovanni Ciandrini
Alberto Carrotta
Maura Mengoni
Emanuele Frontoni
Dimos Kapetis
Source :
Information, Vol 11, Iss 4, p 202 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Predictive Maintenance (PdM) is a prominent strategy comprising all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the main challenges of PdM is to design and develop an embedded smart system to monitor and predict the health status of the machine. In this work, we use a data-driven approach based on machine learning applied to woodworking industrial machines for a major woodworking Italian corporation. Predicted failures probabilities are calculated through tree-based classification models (Gradient Boosting, Random Forest and Extreme Gradient Boosting) and calculated as the temporal evolution of event data. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime (RUL) of woodworking machines. The effectiveness of the proposed method is showed by testing an independent sample of additional woodworking machines without presenting machine down. The Gradient Boosting model achieved accuracy, recall, and precision of 98.9%, 99.6%, and 99.1%. Our predictive maintenance approach deployed on a Big Data framework allows screening simultaneously multiple connected machines by learning from terabytes of log data. The target prediction provides salient information which can be adopted within the maintenance management practice.

Details

Language :
English
ISSN :
20782489
Volume :
11
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Information
Publication Type :
Academic Journal
Accession number :
edsdoj.465b8bf09a64554a9b26b3e1b8f8144
Document Type :
article
Full Text :
https://doi.org/10.3390/info11040202