Back to Search Start Over

An optimised CRISPR Cas9 and Cas12a mutagenesis toolkit for Barley and Wheat

Authors :
Tom Lawrenson
Martha Clarke
Rachel Kirby
Macarena Forner
Burkhard Steuernagel
James K. M. Brown
Wendy Harwood
Source :
Plant Methods, Vol 20, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background CRISPR Cas9 and Cas12a are the two most frequently used programmable nucleases reported in plant systems. There is now a wide range of component parts for both which likely have varying degrees of effectiveness and potentially applicability to different species. Our aim was to develop and optimise Cas9 and Cas12a based systems for highly efficient genome editing in the monocotyledons barley and wheat and produce a user-friendly toolbox facilitating simplex and multiplex editing in the cereal community. Results We identified a Zea mays codon optimised Cas9 with 13 introns in conjunction with arrayed guides driven by U6 and U3 promoters as the best performer in barley where 100% of T0 plants were simultaneously edited in all three target genes. When this system was used in wheat > 90% of T0 plants were edited in all three subgenome targets. For Cas12a, an Arabidopsis codon optimised sequence with 8 introns gave the best editing efficiency in barley when combined with a tRNA based multiguide array, resulting in 90% mutant alleles in three simultaneously targeted genes. When we applied this Cas12a system in wheat 86% & 93% of T0 plants were mutated in two genes simultaneously targeted. We show that not all introns contribute equally to enhanced mutagenesis when inserted into a Cas12a coding sequence and that there is rationale for including multiple introns. We also show that the combined effect of two features which boost Cas12a mutagenesis efficiency (D156R mutation and introns) is more than the sum of the features applied separately. Conclusion Based on the results of our testing, we describe and provide a GoldenGate modular cloning system for Cas9 and Cas12a use in barley and wheat. Proven Cas nuclease and guide expression cassette options found in the toolkit will facilitate highly efficient simplex and multiplex mutagenesis in both species. We incorporate GRF-GIF transformation boosting cassettes in wheat options to maximise workflow efficiency.

Details

Language :
English
ISSN :
17464811
Volume :
20
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Plant Methods
Publication Type :
Academic Journal
Accession number :
edsdoj.46511b0867f4a40ad9b6dabf861ddd7
Document Type :
article
Full Text :
https://doi.org/10.1186/s13007-024-01234-y