Back to Search Start Over

Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2.

Authors :
Janko Arsić
Marko Stojanović
Lucia Petrovičová
Estelle Noyer
Slobodan Milanović
Jan Světlík
Petr Horáček
Jan Krejza
Source :
PLoS ONE, Vol 16, Iss 10, p e0259054 (2021)
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings-and larger, more efficient conduits leading to increased hydraulic conductance-were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
16
Issue :
10
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.461cce2b803948009c23167b4e42e922
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0259054