Back to Search
Start Over
PET imaging of mitochondrial function in acute doxorubicin-induced cardiotoxicity: a proof-of-principle study
- Source :
- Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract Mitochondrial dysfunction plays a key role in doxorubicin-induced cardiotoxicity (DIC). In this proof-of-principle study, we investigated whether PET mapping of cardiac membrane potential, an indicator of mitochondrial function, could detect an acute cardiotoxic effect of doxorubicin (DOX) in a large animal model. Eight Yucatan pigs were imaged dynamically with [18F](4-Fluorophenyl)triphenylphosphonium ([18F]FTPP+) PET/CT. Our experimental protocol included a control saline infusion into the left anterior descending coronary artery (LAD) followed by a DOX test infusion of either 1 mg/kg or 2 mg/kg during PET. We measured the change in total cardiac membrane potential (ΔΨT), a proxy for the mitochondrial membrane potential, ΔΨm, after the saline and DOX infusions. We observed a partial depolarization of the mitochondria following the DOX infusions, which occurred only in myocardial areas distal to the intracoronary catheter, thereby demonstrating a direct association between the exposure of the mitochondria to DOX and a change in ΔΨT. Furthermore, doubling the DOX dose caused a more severe depolarization of myocardium in the LAD territory distal to the infusion catheter. In conclusion, [18F]FTPP+ PET-based ΔΨT mapping can measure partial depolarization of myocardial mitochondria following intracoronary DOX infusion in a large animal model.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.45f72c7eae84477dbaf9f917eb1916ed
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-022-10004-6