Back to Search Start Over

Three parametric Prabhakar fractional derivative-based thermal analysis of Brinkman hybrid nanofluid flow over exponentially heated plate

Authors :
Sohail Nadeem
Bushra Ishtiaq
Jehad Alzabut
Sayed M. Eldin
Source :
Case Studies in Thermal Engineering, Vol 47, Iss , Pp 103077- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Fractional calculus yields numerous implementations in different fields such as biological materials, physical memory, oscillation, wave propagation, and viscoelastic dynamics. Due to the significant applications of fractional calculus, the current study deals with the fractional derivative base study of a Brinkman hybrid nanofluid with an inclined magnetic field. A three-parametric Prabhakar fractional derivative with the involvement of the Mittag-Leffler function is implemented. A vertical plate moving with exponential velocity is considered to be the source of the flow mechanism. Moreover, the effects of exponential heating are incorporated into the thermal analysis. An appropriate group of dimensionless ansatz is adopted to get the dimensionless setup of equations. The Prabhakar fractional operator is implemented in the dimensionless equations which are further tackled by an effectual Laplace transform technique. An inverse Stehfest method and Tzou's method are implemented to tackle the inversion of the Laplace transform. This study exhibits that the fractional constraints minimize both the fields of temperature and velocity. Moreover, the velocity distribution deteriorates corresponding to the improved Brinkman parameter. The Brinkman parameter and the fluid's viscosity are directly related to each other. With the improved Brinkman parameter, the viscosity of the fluid increases. As a result, the fluid motion decreases.

Details

Language :
English
ISSN :
2214157X
Volume :
47
Issue :
103077-
Database :
Directory of Open Access Journals
Journal :
Case Studies in Thermal Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.45f4ec2f28244518a9965dcb5698b166
Document Type :
article
Full Text :
https://doi.org/10.1016/j.csite.2023.103077