Back to Search Start Over

A Neurotoxic Ménage-à-trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade

Authors :
Alberto Granzotto
Lorella M. T. Canzoniero
Stefano L. Sensi
Source :
Frontiers in Molecular Neuroscience, Vol 13 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

Fifty years ago, the seminal work by John Olney provided the first evidence of the neurotoxic properties of the excitatory neurotransmitter glutamate. A process hereafter termed excitotoxicity. Since then, glutamate-driven neuronal death has been linked to several acute and chronic neurological conditions, like stroke, traumatic brain injury, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and Amyotrophic Lateral Sclerosis. Mechanisms linked to the overactivation of glutamatergic receptors involve an aberrant cation influx, which produces the failure of the ionic neuronal milieu. In this context, zinc, the second most abundant metal ion in the brain, is a key but still somehow underappreciated player of the excitotoxic cascade. Zinc is an essential element for neuronal functioning, but when dysregulated acts as a potent neurotoxin. In this review, we discuss the ionic changes and downstream effects involved in the glutamate-driven neuronal loss, with a focus on the role exerted by zinc. Finally, we summarize our work on the fascinating distinct properties of NADPH-diaphorase neurons. This neuronal subpopulation is spared from excitotoxic insults and represents a powerful tool to understand mechanisms of resilience against excitotoxic processes.

Details

Language :
English
ISSN :
16625099
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Molecular Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.4578264344804b3885590c15b424152d
Document Type :
article
Full Text :
https://doi.org/10.3389/fnmol.2020.600089