Back to Search Start Over

A Nucleic Acid‐Based LYTAC Plus Platform to Simultaneously Mediate Disease‐Driven Protein Downregulation

Authors :
Yangyang Huang
Xujiao Zhou
Yirou Zhang
Miao Xie
Fujun Wang
Jingcan Qin
Han Ye
Hong Zhang
Chuan Zhang
Jiaxu Hong
Source :
Advanced Science, Vol 11, Iss 13, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Protein degradation techniques, such as proteolysis‐targeting chimeras (PROTACs) and lysosome‐targeting chimeras (LYTACs), have emerged as promising therapeutic strategies for the treatment of diseases. However, the efficacy of current protein degradation methods still needs to be improved to address the complex mechanisms underlying diseases. Herein, a LYTAC Plus hydrogel engineered is proposed by nucleic acid self‐assembly, which integrates a gene silencing motif into a LYTAC construct to enhance its therapeutic potential. As a proof‐of‐concept study, vascular endothelial growth factor receptor (VEGFR)‐binding peptides and mannose‐6 phosphate (M6P) moieties into a self‐assembled nucleic acid hydrogel are introduced, enabling its LYTAC capability. Small interference RNAs (siRNAs) is then employed that target the angiopoietin‐2 (ANG‐2) gene as cross‐linkers for hydrogel formation, giving the final LYTAC Plus hydrogel gene silencing ability. With dual functionalities, the LYTAC Plus hydrogel demonstrated effectiveness in simultaneously reducing the levels of VEGFR‐2 and ANG‐2 both in vitro and in vivo, as well as in improving therapeutic outcomes in treating neovascular age‐related macular degeneration in a mouse model. As a general material platform, the LYTAC Plus hydrogel may possess great potential for the treatment of various diseases and warrant further investigation.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
13
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.4574439be1d049ad80bb1bd30495bbb1
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202306248