Back to Search Start Over

Effect of Rotational Speed on the Structural, Morphological, and Optical Properties of Biosynthesized Nickel Oxide Thin Films for Selective Solar Absorber Nanocoatings

Authors :
Henok G. Gebretinsae
Meresa G. Tsegay
Giday G. Welegergs
Malik Maaza
Zebib Y. Nuru
Source :
Energies, Vol 15, Iss 23, p 8960 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

This article presents a simple and low-cost green synthesized single-layer NiO selective solar absorber nanocoating prepared by spin coating on a Cu substrate at different rotational speeds (RS). The effects of substrate RS on the structural, morphological, chemical, and optical properties of the NiO nanocoatings were thoroughly investigated. The XRD results reveal the formation of pure diffraction peaks indexed to face-centered cubic NiO nanocoatings. SEM confirmed the uniform distribution of the NiO thin films with a nanosphere-like structure and the influence of RS variation on the formation of NiO nanostructures. EDS and XPS confirmed the presence of Ni and O in the green synthesized NiO coatings. AFM showed homogeneous nanopillar-like NiO thin films with the average surface roughness decreasing from 13.6 to 9.06 nm as the RS increased from 700 to 1300 RPM. Raman spectroscopy of the nanocoatings showed normal modes related to longitudinal optical and transverse optical phonons, and a combination of both, which implies the presence of a defect-rich or anti-ferromagnetically ordered NiO film responsible for the occurrence of more scattering peaks. UV–Vis–NIR and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the optical properties of the nanocoatings. The green synthesized NiO nanocoatings deposited at 700 RPM exhibited excellent solar absorptance (α) of 0.92 and low thermal emittance (ɛ) of 0.11. The optical properties of the selective materials obtained in the present work were correlated with the non-stoichiometric nature of the spin-coated sample, multiple reflections, and interference-induced light absorption on the green synthesized surface. These results suggest that the NiO thin films prepared through this simple and environmentally benign green synthesis method can be promising candidates for efficient solar selective absorbers.

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.456ba8a35f574aa3bb6da434e558f7ae
Document Type :
article
Full Text :
https://doi.org/10.3390/en15238960