Back to Search Start Over

Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance

Authors :
Andrei V. Ermolaev
Mehdi Mabed
Christophe Finot
Goëry Genty
John M. Dudley
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrödinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in different regimes, a task usually performed using intuition and comparison with asymptotic limits. We first apply the method to interpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization. Using numerical simulations, we then apply the technique to the more complex case of noise-driven spontaneous modulation instability, and show that we can readily isolate different regimes of dominant physical interactions, even within the dynamics of chaotic propagation.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.455b659089f4461cabcc88ee2ccf4357
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-37039-7