Back to Search Start Over

QTL Detection of Salt Tolerance at Soybean Seedling Stage Based on Genome-Wide Association Analysis and Linkage Analysis

Authors :
Maolin Sun
Tianxin Zhao
Shuang Liu
Jinfeng Han
Yuhe Wang
Xue Zhao
Yongguang Li
Weili Teng
Yuhang Zhan
Yingpeng Han
Source :
Plants, Vol 13, Iss 16, p 2283 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The utilization of saline land is a global challenge, and cultivating salt-tolerant soybean varieties is beneficial for improving the efficiency of saline land utilization. Exploring the genetic basis of salt-tolerant soybean varieties and developing salt-tolerant molecular markers can effectively promote the process of soybean salt-tolerant breeding. In the study, the membership function method was used to evaluate seven traits related to salt tolerance and comprehensive salt tolerance at the soybean seedling stage; genome-wide association analysis (GWAS) was performed in a natural population containing 200 soybean materials; and linkage analysis was performed in 112 recombinant inbred lines (RIL) population to detect quantitative trait loci (QTLs) of salt tolerance. In the GWAS, 147 SNPs were mapped, explaining 5.28–17.16% of phenotypic variation. In the linkage analysis, 10 QTLs were identified, which could explain 6.9–16.16% of phenotypic variation. And it was found that there were two co-located regions between the natural population and the RIL population, containing seven candidate genes of salt tolerance in soybean. In addition, one colocalization interval was found to contain qZJS-15-1, rs47665107, and rs4793412, all of which could explain more than 10% of phenotypic variation rates, making it suitable for molecular marker development. The physical positions of rs47665107 and rs47934112 were included in qZJS-15-1. Therefore, a KASP marker was designed and developed using Chr. 15:47907445, which was closely linked to the qZJS-15-1. This marker could accurately and clearly cluster the materials of salt-tolerant genotypes in the heterozygous population tested. The QTLs and KASP markers found in the study provide a theoretical and technical basis for accelerating the salt-tolerant breeding of soybean.

Details

Language :
English
ISSN :
22237747
Volume :
13
Issue :
16
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.44e4e5c0a1fc4802abaf2e709c34279c
Document Type :
article
Full Text :
https://doi.org/10.3390/plants13162283