Back to Search
Start Over
Normalized solutions for the Choquard equations with critical nonlinearities
- Source :
- Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 75-83 (2024)
- Publication Year :
- 2024
- Publisher :
- De Gruyter, 2024.
-
Abstract
- This study is concerned with the existence of normalized solutions for the Choquard equations with critical nonlinearities −Δu+λu=f(u)+(Iα∗∣u∣2α*)∣u∣2α*−2u,inRN,∫RN∣u∣2dx=a2,\left\{\begin{array}{l}-\Delta u+\lambda u=f\left(u)+\left({I}_{\alpha }\ast {| u| }^{{2}_{\alpha }^{* }}){| u| }^{{2}_{\alpha }^{* }-2}u,\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\hspace{1.0em}\\ \mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{| u| }^{2}{\rm{d}}x={a}^{2},\hspace{1.0em}\end{array}\right. where N>2N\gt 2, α∈(0,N)\alpha \in \left(0,N), a>0a\gt 0, and Iα(x){I}_{\alpha }\left(x) is the Riesz potential given by Iα(x)=Aα∣x∣N−αwithAα=ΓN−α22απN2Γα2,{I}_{\alpha }\left(x)=\frac{{A}_{\alpha }}{{| x| }^{N-\alpha }}\hspace{1em}\hspace{0.1em}\text{with}\hspace{0.1em}\hspace{0.33em}{A}_{\alpha }=\frac{\Gamma \left(\phantom{\rule[-0.68em]{}{0ex}},\frac{N-\alpha }{2}\right)}{{2}^{\alpha }{\pi }^{\tfrac{N}{2}}\Gamma \left(\phantom{\rule[-0.68em]{}{0ex}},\frac{\alpha }{2}\right)}, and 2α*=N+αN−2{2}_{\alpha }^{* }=\frac{N+\alpha }{N-2} is the Hardy-Littlewood-Sobolev critical exponent and ff is a subcritical nonlinearity. In the case that ff is L2{L}^{2}-supercritical growth, by means of the Pohozaev manifold method and mountain pass theorem, we obtain a couple of the normalized solution; while in the case f(u)=μ∣u∣q−2uf\left(u)=\mu {| u| }^{q-2}u with 20\mu \gt 0 a parameter, we employ the truncation technique and the genus theory to prove the multiplicity of normalized solutions.
Details
- Language :
- English
- ISSN :
- 2191950X
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Advances in Nonlinear Analysis
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.44d034f21e544f8833a296349091bde
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/anona-2024-0030