Back to Search Start Over

Vibrio cholerae ensures function of host proteins required for virulence through consumption of luminal methionine sulfoxide.

Authors :
Audrey S Vanhove
Saiyu Hang
Vidhya Vijayakumar
Adam Cn Wong
John M Asara
Paula I Watnick
Source :
PLoS Pathogens, Vol 13, Iss 6, p e1006428 (2017)
Publication Year :
2017
Publisher :
Public Library of Science (PLoS), 2017.

Abstract

Vibrio cholerae is a diarrheal pathogen that induces accumulation of lipid droplets in enterocytes, leading to lethal infection of the model host Drosophila melanogaster. Through untargeted lipidomics, we provide evidence that this process is the product of a host phospholipid degradation cascade that induces lipid droplet coalescence in enterocytes. This infection-induced cascade is inhibited by mutation of the V. cholerae glycine cleavage system due to intestinal accumulation of methionine sulfoxide (MetO), and both dietary supplementation with MetO and enterocyte knock-down of host methionine sulfoxide reductase A (MsrA) yield increased resistance to infection. MsrA converts both free and protein-associated MetO to methionine. These findings support a model in which dietary MetO competitively inhibits repair of host proteins by MsrA. Bacterial virulence strategies depend on functional host proteins. We propose a novel virulence paradigm in which an intestinal pathogen ensures the repair of host proteins essential for pathogenesis through consumption of dietary MetO.

Details

Language :
English
ISSN :
15537366 and 15537374
Volume :
13
Issue :
6
Database :
Directory of Open Access Journals
Journal :
PLoS Pathogens
Publication Type :
Academic Journal
Accession number :
edsdoj.44bb72083947434aba1a99ae53ccc492
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.ppat.1006428