Back to Search Start Over

Autonomous Surface and Underwater Vehicles as Effective Ecosystem Monitoring and Research Platforms in the Arctic—The Glider Project

Authors :
Lionel Camus
Hector Andrade
Ana Sofia Aniceto
Magnus Aune
Kanchana Bandara
Sünnje Linnéa Basedow
Kai Håkon Christensen
Jeremy Cook
Malin Daase
Katherine Dunlop
Stig Falk-Petersen
Peer Fietzek
Gro Fonnes
Peygham Ghaffari
Geir Gramvik
Inger Graves
Daniel Hayes
Tor Langeland
Harald Lura
Trond Kristiansen
Ole Anders Nøst
David Peddie
Joel Pederick
Geir Pedersen
Ann Kristin Sperrevik
Kai Sørensen
Luca Tassara
Sigurd Tjøstheim
Vigdis Tverberg
Salve Dahle
Source :
Sensors, Vol 21, Iss 20, p 6752 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Effective ocean management requires integrated and sustainable ocean observing systems enabling us to map and understand ecosystem properties and the effects of human activities. Autonomous subsurface and surface vehicles, here collectively referred to as “gliders”, are part of such ocean observing systems providing high spatiotemporal resolution. In this paper, we present some of the results achieved through the project “Unmanned ocean vehicles, a flexible and cost-efficient offshore monitoring and data management approach—GLIDER”. In this project, three autonomous surface and underwater vehicles were deployed along the Lofoten–Vesterålen (LoVe) shelf-slope-oceanic system, in Arctic Norway. The aim of this effort was to test whether gliders equipped with novel sensors could effectively perform ecosystem surveys by recording physical, biogeochemical, and biological data simultaneously. From March to September 2018, a period of high biological activity in the area, the gliders were able to record a set of environmental parameters, including temperature, salinity, and oxygen, map the spatiotemporal distribution of zooplankton, and record cetacean vocalizations and anthropogenic noise. A subset of these parameters was effectively employed in near-real-time data assimilative ocean circulation models, improving their local predictive skills. The results presented here demonstrate that autonomous gliders can be effective long-term, remote, noninvasive ecosystem monitoring and research platforms capable of operating in high-latitude marine ecosystems. Accordingly, these platforms can record high-quality baseline environmental data in areas where extractive activities are planned and provide much-needed information for operational and management purposes.

Details

Language :
English
ISSN :
14248220
Volume :
21
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.44440862907347219149609cea55866e
Document Type :
article
Full Text :
https://doi.org/10.3390/s21206752