Back to Search Start Over

Isolation and Optimization of a Broad-Spectrum Synthetic Antimicrobial Peptide, Ap920-WI, from Arthrobacter sp. H5 for the Biological Control of Plant Diseases

Authors :
Li Zhao
Md. Samiul Islam
Pei Song
Li Zhu
Wubei Dong
Source :
International Journal of Molecular Sciences, Vol 24, Iss 13, p 10598 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Antimicrobial peptides (AMPs) are naturally occurring molecules found in various organisms that can help to defend against invading microorganisms and reduce the likelihood of drug resistance development. This study focused on the isolation of new AMPs from the genome library of a Gram-positive bacterium called Arthrobacter sp. H5. To achieve this, we used the Bacillus subtilis expression system and employed bioinformatics techniques to optimize and modify the peptides, resulting in the development of a new synthetic antimicrobial peptide (SAMP). Ap920 is expected to be a new antimicrobial peptide with a high positive charge (+12.5). Through optimization, a new synthetic antimicrobial peptide, Ap920-WI, containing only 15 amino acids, was created. Thereafter, the antimicrobial and antifungal activities of Ap920-WI were determined using minimum inhibitory concentration (MIC) and the concentration for 50% of maximal effect (EC50). The Ap920-WI peptide was observed to target the outer membrane of fungal hyphae, leading to inhibition of growth in Rhizoctonia Solani, Sclerotinia sclerotiorum, and Botrytis cinerea. In plants, Ap920-WI showed significant antifungal activity and inhibited the infestation of S. sclerotiorum on rape leaves. Importantly, Ap920-WI was found to be safe for mammalian cells since it did not show any hemolytic activity against sheep red blood cells. Overall, the study found that the new synthetic antimicrobial peptide Ap920-WI exhibits broad-spectrum activity against microorganisms and may offer a new solution for controlling plant diseases, as well as hold potential for drug development.

Details

Language :
English
ISSN :
24131059, 14220067, and 16616596
Volume :
24
Issue :
13
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.442b5b8287b46359a67da590acaf7bd
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms241310598