Back to Search Start Over

A text mining approach to categorize patient safety event reports by medication error type

Authors :
Christian Boxley
Mari Fujimoto
Raj M. Ratwani
Allan Fong
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-8 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Patient safety reporting systems give healthcare provider staff the ability to report medication related safety events and errors; however, many of these reports go unanalyzed and safety hazards go undetected. The objective of this study is to examine whether natural language processing can be used to better categorize medication related patient safety event reports. 3,861 medication related patient safety event reports that were previously annotated using a consolidated medication error taxonomy were used to develop three models using the following algorithms: (1) logistic regression, (2) elastic net, and (3) XGBoost. After development, models were tested, and model performance was analyzed. We found the XGBoost model performed best across all medication error categories. ‘Wrong Drug’, ‘Wrong Dosage Form or Technique or Route’, and ‘Improper Dose/Dose Omission’ categories performed best across the three models. In addition, we identified five words most closely associated with each medication error category and which medication error categories were most likely to co-occur. Machine learning techniques offer a semi-automated method for identifying specific medication error types from the free text of patient safety event reports. These algorithms have the potential to improve the categorization of medication related patient safety event reports which may lead to better identification of important medication safety patterns and trends.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.4406d09e2c8f4bdab0a1e33a60cadd13
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-45152-w