Back to Search Start Over

Robust TOA-Based UAS Navigation under Model Mismatch in GNSS-Denied Harsh Environments

Authors :
Jan Mortier
Gaël Pagès
Jordi Vilà-Valls
Source :
Remote Sensing, Vol 12, Iss 18, p 2928 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Global Navigation Satellite Systems (GNSS) is the technology of choice for outdoor positioning purposes but has many limitations when used in safety-critical applications such Intelligent Transportation Systems (ITS) and Unmanned Autonomous Systems (UAS). Namely, its performance clearly degrades in harsh propagation conditions and is not reliable due to possible attacks or interference. Moreover, GNSS signals may not be available in the so-called GNSS-denied environments, such as deep urban canyons or indoors, and standard GNSS architectures do not provide the precision needed in ITS. Among the different alternatives, cellular signals (LTE/5G) may provide coverage in constrained urban environments and Ultra-Wideband (UWB) ranging is a promising solution to achieve high positioning accuracy. The key points impacting any time-of-arrival (TOA)-based navigation system are (i) the transmitters’ geometry, (ii) a perfectly known transmitters’ position, and (iii) the environment. In this contribution, we analyze the performance loss of alternative TOA-based navigation systems in real-life applications where we may have both transmitters’ position mismatch, harsh propagation environments, and GNSS-denied conditions. In addition, we propose new robust filtering methods able to cope with both effects up to a certain extent. Illustrative results in realistic scenarios are provided to support the discussion and show the performance improvement brought by the new methodologies with respect to the state-of-the-art.

Details

Language :
English
ISSN :
20724292
Volume :
12
Issue :
18
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.43c3c3398aea4efabad3a5d5195c1d72
Document Type :
article
Full Text :
https://doi.org/10.3390/rs12182928