Back to Search Start Over

A Hybrid Approach for Soil Total Nitrogen Anomaly Detection Integrating Machine Learning and Spatial Statistics

Authors :
Wengang Zheng
Renping Lan
Lili Zhangzhong
Linnan Yang
Lutao Gao
Jingxin Yu
Source :
Agronomy, Vol 13, Iss 11, p 2669 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Soil total nitrogen is one of the most important basic indicators for fertiliser decision making, but tens of millions of soil total nitrogen sampling data have been accumulated, forming a huge database. In this large database, there is a large amount of anomalous data, which can interfere with data analysis, affect the construction of spatial interpolation and prediction models, and then affect the accuracy of nutrient management decisions. The traditional method of identifying soil total nitrogen anomalies based on boxplots suffers from the problems of not being able to identify local anomalies, which can easily lead to misclassification of soil total nitrogen data anomalies, and the detection efficiency is not high. We propose a method to identify soil total nitrogen outliers by combining the Isolation Forest algorithm and local spatial autocorrelation analysis, which can simultaneously detect global and local outliers from large amounts of data and combine organic matter as an auxiliary indicator in the spatial analysis to help judge local outliers. Finally, the results of global and local anomalies were combined to provide a comprehensive assessment of the soil nitrogen data, avoiding the misjudgement or omission of judgement that can occur when using a single method. Using 25,930 soil test data from Yunnan Province in 2009 as an example, we compared and analysed the typical boxplot method and the unsupervised OneClassSVM method and evaluated the performance of each method in terms of correct detection rate, false positive rate and false negative rate. The results show that the proposed method has a correct detection rate (TR) of 99.97%, a false positive rate (FPR) of 8.06% and a false negative rate (FNR) of 0.01% on the data, which shows high validity and accuracy; it is also comparable to the independent isolated forests (FNR = 4.76%), boxplot (FNR = 3.90%) and OneClassSVM (FNR = 4.77%), and the false negative rate is reduced by 4.75%, 3.89% and 4.76%, respectively.

Details

Language :
English
ISSN :
20734395
Volume :
13
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Agronomy
Publication Type :
Academic Journal
Accession number :
edsdoj.43554f8d48f14fdfba30d2f1ea3bd649
Document Type :
article
Full Text :
https://doi.org/10.3390/agronomy13112669