Back to Search Start Over

Potential benefits of using radioactive ion beams for range margin reduction in carbon ion therapy

Authors :
Olga Sokol
Laura Cella
Daria Boscolo
Felix Horst
Caterina Oliviero
Roberto Pacelli
Giuseppe Palma
Micol De Simoni
Manuel Conson
Mara Caroprese
Ulrich Weber
Christian Graeff
Katia Parodi
Marco Durante
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-12 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Sharp dose gradients and high biological effectiveness make ions such as 12C an ideal tool to treat deep-seated tumors, however, at the same time, sensitive to errors in the range prediction. Tumor safety margins mitigate these uncertainties, but during the irradiation they lead to unavoidable damage to the surrounding healthy tissue. To fully exploit the Bragg peak benefits, a large effort is put into establishing precise range verification methods. Despite positron emission tomography being widely in use for this purpose in 12C therapy, the low count rates, biological washout, and broad activity distribution still limit its precision. Instead, radioactive beams used directly for treatment would yield an improved signal and a closer match with the dose fall-off, potentially enabling precise in vivo beam range monitoring. We have performed a treatment planning study to estimate the possible impact of the reduced range uncertainties, enabled by radioactive 11C ions treatments, on sparing critical organs in tumor proximity. Compared to 12C treatments, (i) annihilation maps for 11C ions can reflect sub- millimeter shifts in dose distributions in the patient, (ii) outcomes of treatment planning with 11C significantly improve and (iii) less severe toxicities for serial and parallel critical organs can be expected.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.434fe321c8574934960630f920251992
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-26290-z