Back to Search Start Over

Crowd-Driven and Automated Mapping of Field Boundaries in Highly Fragmented Agricultural Landscapes of Ethiopia with Very High Spatial Resolution Imagery

Authors :
Michael Marshall
Sophie Crommelinck
Divyani Kohli
Christoph Perger
Michael Ying Yang
Aniruddha Ghosh
Steffen Fritz
Kees de Bie
Andy Nelson
Source :
Remote Sensing, Vol 11, Iss 18, p 2082 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

Mapping the extent and location of field boundaries is critical to food security analysis but remains problematic in the Global South where such information is needed the most. The difficulty is due primarily to fragmentation in the landscape, small farm sizes, and irregular farm boundaries. Very high-resolution satellite imagery affords an opportunity to delineate such fields, but the challenge remains of determining such boundaries in a systematic and accurate way. In this paper, we compare a new crowd-driven manual digitization tool (Crop Land Extent) with two semi-automated methods (contour detection and multi-resolution segmentation) to determine farm boundaries from WorldView imagery in highly fragmented agricultural landscapes of Ethiopia. More than 7000 one square-kilometer image tiles were used for the analysis. The three methods were assessed using quantitative completeness and spatial correctness. Contour detection tended to under-segment when compared to manual digitization, resulting in better performance for larger (approaching 1 ha) sized fields. Multi-resolution segmentation on the other hand, tended to over-segment, resulting in better performance for small fields. Neither semi-automated method in their current realizations however are suitable for field boundary mapping in highly fragmented landscapes. Crowd-driven manual digitization is promising, but requires more oversight, quality control, and training than the current workflow could allow.

Details

Language :
English
ISSN :
20724292
Volume :
11
Issue :
18
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.4331493425cb4fc086529703b882e25e
Document Type :
article
Full Text :
https://doi.org/10.3390/rs11182082