Back to Search Start Over

Enhanced and Proficient Soft Template Array of Polyaniline—TiO2 Nanocomposites Fibers Prepared Using Anionic Surfactant for Fuel Cell Hydrogen Storage

Authors :
Nacer Badi
Aashis S. Roy
Hatem A. Al-Aoh
Mohamed S. Motawea
Saleh A. Alghamdi
Abdulrhman M. Alsharari
Abdulrahman S. Albaqami
Alex Ignatiev
Source :
Polymers, Vol 15, Iss 20, p 4186 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Porous TiO2-doped polyaniline and polyaniline nanocomposite fibers prepared by the in situ polymerization technique using anionic surfactant in an ice bath were studied. The prepared nanocomposites were characterized by FTIR spectroscopy and XRD patterns for structural analysis. The surface morphology of the polyaniline and its nanocomposites was examined using SEM images. DC conductivity shows the three levels of conductivity inherent in a semiconductor. Among the nanocomposites, the maximum DC conductivity is 5.6 S/cm for 3 wt.% polyaniline-TiO2 nanocomposite. Cyclic voltammetry shows the properties of PANI due to the redox peaks of 0.93 V and 0.24 V. Both peaks are due to the redox transition of PANI from the semiconductor to the conductive state. The hydrogen absorption capacity is approximately 4.5 wt.%, but at 60 °C the capacity doubles to approximately 7.3 wt.%. Conversely, 3 wt.% PANI—TiO2 nanocomposites have a high absorption capacity of 10.4 wt.% compared to other nanocomposites. An overall desorption capacity of 10.4 wt.% reduced to 96% was found for 3 wt.% TiO2-doped PANI nanocomposites.

Details

Language :
English
ISSN :
20734360
Volume :
15
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
edsdoj.431e2d5109b445868d545ac5432dd510
Document Type :
article
Full Text :
https://doi.org/10.3390/polym15204186