Back to Search Start Over

Design Strategies for Large Current Density Hydrogen Evolution Reaction

Authors :
Lishang Zhang
Zhe Shi
Yanping Lin
Fali Chong
Yunhui Qi
Source :
Frontiers in Chemistry, Vol 10 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance, cost-efficiency, and high performance for large current density industrial applications is vital for H2 production. However, most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm−2), which is far from satisfactory for industrial applications. In this minireview, we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER), whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed, including self-supporting electrodes to avoid the detachment of active materials, the superaerophobicity and superhydrophilicity to release H2 bubble in time, and the mechanical properties to resist destructive stress. Finally, some views on the further development of high current density HER electrocatalysts are proposed, such as scale up of the synthesis process, in situ characterization to reveal the micro mechanism, and the implementation of catalysts into practical electrolyzers for the commercial application of as-developed catalysts. This review aimed to guide HER catalyst design and make large-scale hydrogen production one step further.

Details

Language :
English
ISSN :
22962646
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.430595826ff14550af7bdff77963edc0
Document Type :
article
Full Text :
https://doi.org/10.3389/fchem.2022.866415