Back to Search Start Over

Using a deep-learning approach to infer and forecast the Indonesian Throughflow transport from sea surface height

Authors :
Linchao Xin
Shijian Hu
Fan Wang
Wenhong Xie
Dunxin Hu
Changming Dong
Source :
Frontiers in Marine Science, Vol 10 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

The Indonesian Throughflow (ITF) connects the tropical Pacific and Indian Oceans and is critical to the regional and global climate systems. Previous research indicates that the Indo-Pacific pressure gradient is a major driver of the ITF, implying the possibility of forecasting ITF transport by the sea surface height (SSH) of the Indo-Pacific Ocean. Here we used a deep-learning approach with the convolutional neural network (CNN) model to reproduce ITF transport. The CNN model was trained with a random selection of the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations and verified with residual components of the CMIP6 simulations. A test of the training results showed that the CNN model with SSH is able to reproduce approximately 90% of the total variance of ITF transport. The CNN model with CMIP6 was then transformed to the Simple Ocean Data Assimilation (SODA) dataset and this transformed model reproduced approximately 80% of the total variance of ITF transport in the SODA. A time series of ITF transport, verified by Monitoring the ITF (MITF) and International Nusantara Stratification and Transport (INSTANT) measurements of ITF, was then produced by the model using satellite observations from 1993 to 2021. We discovered that the CNN model can make a valid prediction with a lead time of 7 months, implying that the ITF transport can be predicted using the deep-learning approach with SSH data.

Details

Language :
English
ISSN :
22967745
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Marine Science
Publication Type :
Academic Journal
Accession number :
edsdoj.4234288184c04168b80e3728500b06a8
Document Type :
article
Full Text :
https://doi.org/10.3389/fmars.2023.1079286