Back to Search Start Over

Rendering protein mutation movies with MutAmore

Authors :
Konstantin Weissenow
Burkhard Rost
Source :
BMC Bioinformatics, Vol 24, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background The success of AlphaFold2 in reliable protein three-dimensional (3D) structure prediction, assists the move of structural biology toward studies of protein dynamics and mutational impact on structure and function. This transition needs tools that qualitatively assess alternative 3D conformations. Results We introduce MutAmore, a bioinformatics tool that renders individual images of protein 3D structures for, e.g., sequence mutations into a visually intuitive movie format. MutAmore streamlines a pipeline casting single amino-acid variations (SAVs) into a dynamic 3D mutation movie providing a qualitative perspective on the mutational landscape of a protein. By default, the tool first generates all possible variants of the sequence reachable through SAVs (L*19 for proteins with L residues). Next, it predicts the structural conformation for all L*19 variants using state-of-the-art models. Finally, it visualizes the mutation matrix and produces a color-coded 3D animation. Alternatively, users can input other types of variants, e.g., from experimental structures. Conclusion MutAmore samples alternative protein configurations to study the dynamical space accessible from SAVs in the post-AlphaFold2 era of structural biology. As the field shifts towards the exploration of alternative conformations of proteins, MutAmore aids in the understanding of the structural impact of mutations by providing a flexible pipeline for the generation of protein mutation movies using current and future structure prediction models.

Details

Language :
English
ISSN :
14712105
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
edsdoj.41e75c56915a4779a9f4fb0ff4f42cd2
Document Type :
article
Full Text :
https://doi.org/10.1186/s12859-023-05610-8