Back to Search Start Over

Biomaterials and Oxygen Join Forces to Shape the Immune Response and Boost COVID‐19 Vaccines

Authors :
Thibault Colombani
Loek J. Eggermont
Zachary J. Rogers
Lindsay G. A. McKay
Laura E. Avena
Rebecca I. Johnson
Nadia Storm
Anthony Griffiths
Sidi A. Bencherif
Source :
Advanced Science, Vol 8, Iss 18, Pp n/a-n/a (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has led to an unprecedented global health crisis, resulting in a critical need for effective vaccines that generate protective antibodies. Protein subunit vaccines represent a promising approach but often lack the immunogenicity required for strong immune stimulation. To overcome this challenge, it is first demonstrated that advanced biomaterials can be leveraged to boost the effectiveness of SARS‐CoV‐2 protein subunit vaccines. Additionally, it is reported that oxygen is a powerful immunological co‐adjuvant and has an ability to further potentiate vaccine potency. In preclinical studies, mice immunized with an oxygen‐generating coronavirus disease 2019 (COVID‐19) cryogel‐based vaccine (O2‐CryogelVAX) exhibit a robust Th1 and Th2 immune response, leading to a sustained production of highly effective neutralizing antibodies against the virus. Even with a single immunization, O2‐CryogelVAX achieves high antibody titers within 21 days, and both binding and neutralizing antibody levels are further increased after a second dose. Engineering a potent vaccine system that generates sufficient neutralizing antibodies after one dose is a preferred strategy amid vaccine shortage. The data suggest that this platform is a promising technology to reinforce vaccine‐driven immunostimulation and is applicable to current and emerging infectious diseases.

Details

Language :
English
ISSN :
21983844
Volume :
8
Issue :
18
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.41d8a169b9674824a531554dd00e0e3f
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202100316