Back to Search Start Over

Microfabrication Technologies for Nanoinvasive and High‐Resolution Magnetic Neuromodulation

Authors :
Changhao Ge
Tahereh Masalehdan
Mahdieh Shojaei Baghini
Vicente Duran Toro
Lorenzo Signorelli
Hannah Thomson
Danijela Gregurec
Hadi Heidari
Source :
Advanced Science, Vol 11, Iss 46, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter‐resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next‐generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state‐of‐the‐art microfabrication in depth due to its irreplaceable role in realizing next‐generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through‐silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
46
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.41b405197cde4af3a8076626a5b803d2
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202404254