Back to Search
Start Over
Growth of highly conducting MoS2-xNx thin films with enhanced 1T' phase by pulsed laser deposition and exploration of their nanogenerator application
- Source :
- iScience, Vol 25, Iss 3, Pp 103898- (2022)
- Publication Year :
- 2022
- Publisher :
- Elsevier, 2022.
-
Abstract
- Summary: High-quality growth of MoS2-xNx films is realized on single-crystal c-Al2O3 substrates by the pulsed laser deposition (PLD) in ammonia rendering highly stable and tunable 1Tʹ/2H biphasic constitution. Raman spectroscopy reveals systematic enhancement of 1Tʹ phase component due to the incorporation of covalently bonded N-doping in MoS2 lattice, inducing compressive strain. Interestingly, the film deposited at 300 mTorr NH3 shows ∼80% 1Tʹ phase. The transport measurements performed on MoS2-xNx films deposited at 300 mTorr NH3 display very low room temperature resistivity of 0.03 mΩ-cm which is 100 times enhanced over the undoped MoS2 grown under comparable conditions. A triboelectric nanogenerator (TENG) device containing biphasic MoS2-xNx film as an electron acceptor exhibits a clear enhancement in the output voltage as compared to the pristine MoS2. Device architecture, p-type N doping in MoS2 lattice, favorably increased work-function, multiphasic component of MoS2, and increased surface roughness synergistically contribute to superior TENG performance.
- Subjects :
- Materials science
Materials synthesis
Nanomaterials
Science
Subjects
Details
- Language :
- English
- ISSN :
- 25890042 and 97059692
- Volume :
- 25
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- iScience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.41a9705969244df4bbb3fbb4fda3a95b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.isci.2022.103898