Back to Search
Start Over
Synthesis of a Novel Unexpected Cu(II)–Thiazolidine Complex—X-ray Structure, Hirshfeld Surface Analysis, and Biological Studies
- Source :
- Molecules, Vol 27, Iss 14, p 4583 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- An unexpected trinuclear Cu(II)–thiazolidine complex has been synthesized by mixing CuCl2·2H2O with the Schiff base ligand, 1-(((4,5-dihydrothiazol-2-yl)ethylidene)hydrazono)methyl)phenol L, in ethanol. Unexpectedly, the reaction proceeded via the hydrolysis of the Schiff base L, followed by cyclization to afford 3-methyl-5,6-dihydrothiazolo[3,2-c][1,2,3]triazole (La), then complexation with the Cu(II) salt, forming the trinuclear [Cu3(La)4(Cl)6] complex. The complex was characterized by means of FTIR spectra, elemental analysis, and X-ray crystallography. In the trinuclear [Cu3(La)4(Cl)6] complex, there are two crystallographically independent hexa- and penta-coordinated Cu(II) sites, where the thiazolidine ligand La units act as a monodentate ligand and a linker between the Cu(II) centers. The crystal packing of the [Cu3(La)4(Cl)6] complex is primarily affected by the weak non-covalent C-H∙∙∙Cl interactions. In accordance with Hirshfeld surface analysis, the Cl∙∙∙H, H∙∙∙H, S∙∙∙H, and N∙∙∙H percentages are 31.9%, 27.2%, 13.5%, and 9.9%, respectively. X-ray photoelectron spectroscopy confirmed the oxidation state of copper as Cu(II), as well as the presence of two different coordination environments around copper centers. The complex showed interesting antibacterial activity against the Gram-positive bacteria S. subtilis, with MIC = 9.7 µg/mL compared to MIC = 4.8 µg/mL for the control, gentamycin. Moreover, the Cu(II) complex showed an equal MIC (312.5 µg/mL) against C. albicans compared to ketoconazole. It also exhibits a very promising inhibitory activity against colon carcinoma (IC50 = 3.75 ± 0.43 µg/mL).
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 27
- Issue :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.41843a6b77a24b4e99b9a1e55428d303
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules27144583