Back to Search Start Over

Circulating Tumor DNA Profiling in Liver Transplant for Hepatocellular Carcinoma, Cholangiocarcinoma, and Colorectal Liver Metastases: A Programmatic Proof of Concept

Authors :
Hanna Hong
Chase J. Wehrle
Mingyi Zhang
Sami Fares
Henry Stitzel
David Garib
Bassam Estfan
Suneel Kamath
Smitha Krishnamurthi
Wen Wee Ma
Teodora Kuzmanovic
Elizabeth Azzato
Emrullah Yilmaz
Jamak Modaresi Esfeh
Maureen Whitsett Linganna
Mazhar Khalil
Alejandro Pita
Andrea Schlegel
Jaekeun Kim
R. Matthew Walsh
Charles Miller
Koji Hashimoto
David Choon Hyuck Kwon
Federico Aucejo
Source :
Cancers, Vol 16, Iss 5, p 927 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Introduction: Circulating tumor DNA (ctDNA) is emerging as a promising, non-invasive diagnostic and surveillance biomarker in solid organ malignancy. However, its utility before and after liver transplant (LT) for patients with primary and secondary liver cancers is still underexplored. Methods: Patients undergoing LT for hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and colorectal liver metastases (CRLM) with ctDNA testing were included. CtDNA testing was conducted pre-transplant, post-transplant, or both (sequential) from 11/2019 to 09/2023 using Guardant360, Guardant Reveal, and Guardant360 CDx. Results: 21 patients with HCC (n = 9, 43%), CRLM (n = 8, 38%), CCA (n = 3, 14%), and mixed HCC/CCA (n = 1, 5%) were included in the study. The median follow-up time was 15 months (range: 1–124). The median time from pre-operative testing to surgery was 3 months (IQR: 1–4; range: 0–5), and from surgery to post-operative testing, it was 9 months (IQR: 2–22; range: 0.4–112). A total of 13 (62%) patients had pre-transplant testing, with 8 (62%) having ctDNA detected (ctDNA+) and 5 (32%) not having ctDNA detected (ctDNA-). A total of 18 (86%) patients had post-transplant testing, 11 (61%) of whom were ctDNA+ and 7 (33%) of whom were ctDNA-. The absolute recurrence rates were 50% (n = 5) in those who were ctDNA+ vs. 25% (n = 1) in those who were ctDNA- in the post-transplant setting, though this difference was not statistically significant (p = 0.367). Six (29%) patients (HCC = 3, CCA = 1, CRLM = 2) experienced recurrence with a median recurrence-free survival of 14 (IQR: 6–40) months. Four of these patients had positive post-transplant ctDNA collected following diagnosis of recurrence, while one patient had positive post-transplant ctDNA collected preceding recurrence. A total of 10 (48%) patients had sequential ctDNA testing, of whom n = 5 (50%) achieved ctDNA clearance (+/−). The remainder were ctDNA+/+ (n = 3, 30%), ctDNA−/− (n = 1, 10%), and ctDNA−/+ (n = 1, 11%). Three (30%) patients showed the acquisition of new genomic alterations following transplant, all without recurrence. Overall, the median tumor mutation burden (TMB) decreased from 1.23 mut/Mb pre-transplant to 0.00 mut/Mb post-transplant. Conclusions: Patients with ctDNA positivity experienced recurrence at a higher rate than the ctDNA- patients, indicating the potential role of ctDNA in predicting recurrence after curative-intent transplant. Based on sequential testing, LT has the potential to clear ctDNA, demonstrating the capability of LT in the treatment of systemic disease. Transplant providers should be aware of the potential of donor-derived cell-free DNA and improved approaches are necessary to address such concerns.

Details

Language :
English
ISSN :
20726694
Volume :
16
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
edsdoj.416a8221d8684cf693a60a15d75c1351
Document Type :
article
Full Text :
https://doi.org/10.3390/cancers16050927