Back to Search
Start Over
Revolutionizing the Role of Solar Light Responsive BiVO4/BiOBr Heterojunction Photocatalyst for the Photocatalytic Deterioration of Tetracycline and Photoelectrocatalytic Water Splitting
- Source :
- Materials, Vol 16, Iss 16, p 5661 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- In this study, a series of BiVO4/BiOBr composites with varying mole ratios were successfully synthesized using a hydrothermal method. The in-situ synthesis strategy facilitated the formation of a close interfacial contact between BiVO4 and BiOBr at the depletion zone, resulting in improved charge segregation, migration, reduced charge recombination, enhanced solar light absorption capacity, promoting narrow band gap, and large surface area. This study investigates the influence of different mole ratios of BiVO4 and BiOBr in a BiVO4/BiOBr nanocomposite on the photocatalytic degradation of tetracycline (TC), a pharmaceutical pollutant, and photoelectrocatalytic water splitting (PEC) under solar light irradiation. Maximum decomposition efficiency of ~90.4% (with a rate constant of 0.0159 min−1) for TC was achieved with 0.5 g/L of 3:1 BiVO4: BiOBr (31BVBI) photocatalyst within 140 min. The degraded compounds resulting from the TC abatement were analyzed using GC-MS. Furthermore, TC standards exhibited 78.2% and 87.7% removal of chemical oxygen demand (COD) and total organic carbon (TOC), respectively, while TC tablets showed 64.6% COD removal and 73.8% TOC removal. The PEC water splitting experiments demonstrated that the 31BVBI photoanode achieved the highest photocurrent density of approximately 0.2198 mA/cm2 at 1.23 V vs. RHE, resulting in the generation of approximately 1.864 mmolcm−2 s−1 of hydrogen, while remaining stable for 21,600 s. The stability of the photocatalyst was confirmed by post-degradation characterizations, which revealed intact crystalline planes, shape, and surface area. Comparisons with existing physicochemical methods used in industries indicate that the reported photocatalyst possesses strong surface catalytic properties and has the potential for application in industrial wastewater treatment and hydrogen generation, offering an advantageous alternative to costly and time-consuming processes.
- Subjects :
- BiVO4/BiOBr
photocatalytic decomposition
tetracycline
solar light
photoelectrocatalytic water splitting
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Subjects
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 16
- Issue :
- 16
- Database :
- Directory of Open Access Journals
- Journal :
- Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.415bca2e8054410782b5d0b1973cbc0d
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ma16165661