Back to Search Start Over

On the {2}-domination number of graphs

Authors :
Abel Cabrera-Martínez
Andrea Conchado Peiró
Source :
AIMS Mathematics, Vol 7, Iss 6, Pp 10731-70743 (2022)
Publication Year :
2022
Publisher :
AIMS Press, 2022.

Abstract

Let $ G $ be a nontrivial graph and $ k\geq 1 $ an integer. Given a vector of nonnegative integers $ w = (w_0, \ldots, w_k) $, a function $ f: V(G)\rightarrow \{0, \ldots, k\} $ is a $ w $-dominating function on $ G $ if $ f(N(v))\geq w_i $ for every $ v\in V(G) $ such that $ f(v) = i $. The $ w $-domination number of $ G $, denoted by $ \gamma_{w}(G) $, is the minimum weight $ \omega(f) = \sum_{v\in V(G)}f(v) $ among all $ w $-dominating functions on $ G $. In particular, the $ \{2\} $-domination number of a graph $ G $ is defined as $ \gamma_{\{2\}}(G) = \gamma_{(2, 1, 0)}(G) $. In this paper we continue with the study of the $ \{2\} $-domination number of graphs. In particular, we obtain new tight bounds on this parameter and provide closed formulas for some specific families of graphs.

Details

Language :
English
ISSN :
24736988
Volume :
7
Issue :
6
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.414fa6fb4d4867bf30538b6e5bcdcd
Document Type :
article
Full Text :
https://doi.org/10.3934/math.2022599?viewType=HTML