Back to Search Start Over

Ball-milling synthesized Bi2VO5.5 for piezo-photocatalytic assessment

Authors :
Manish Kumar
Rahul Vaish
Imen Kebaili
Imed Boukhris
Hyeong Kwang Benno Park
Yun Hwan Joo
Tae Hyun Sung
Anuruddh Kumar
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The mechanochemical ball milling followed by heating at 650 °C for 5 h successfully produced the single-phase Bi2VO5.5 powder. Catalytic activity for methylene blue dye degradation was investigated. Raman spectroscopy and X-ray diffraction were used to confirm the phase formation. The sample’s charge carrier transportation behavior was ascertained using time-dependent photocurrent analysis. The piezo-photocatalysis experiment yielded a 63% degradation efficiency for the ball-milled Bi2VO5.5 sample. The pseudo-first-order kinetics of the piezo-photocatalytic dye degradation are discerned, and the significant k value of 0.00529 min−1 is achieved. The scavenger test declares the h+ radical is the predominant active species during the piezo-photocatalysis experiment. Vigna radiata seeds were used in a phytotoxicity test to evaluate the germination index. The mechanochemical activation method facilitates reactions by lowering reaction temperature and time. The effect of improved piezo-photocatalytic efficiency on the ball-milled Bi2VO5.5 powder is an unexplored area, and we have attempted to investigate it. Here, ball-milled Bi2VO5.5 powder achieved improved dye degradation performance.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.413d2fd5fcf4a3f8d34d9adfb1b6b42
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-33658-2