Back to Search Start Over

A Study on Weight Reduction and High Performance in Separated Magnetic Bearings

Authors :
Si-Woo Song
Won-Ho Kim
Ju Lee
Dong-Hoon Jung
Source :
Energies, Vol 16, Iss 7, p 3136 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Recently, high-speed motors are receiving a lot of attention in the industrial field. When driving a motor at high speed, the advantages include high power density, high efficiency, and miniaturization. However, the disadvantages of the high-speed operation of motors are mechanical and structural safety. This is because the bearings used in high-speed motors require characteristics such as precision and low friction. There are two prominent types of bearings mainly used in high-speed motors: rolling bearings and magnetic bearings. A feature of rolling bearings is that they reduce frictional resistance by contacting points or lines between the shaft and the bearing. However, the disadvantages of rolling bearings are high mechanical friction losses due to the need for contact with the lubrication system. Maintenance costs are high. For this reason, a lot of research on bearings is being conducted to reduce the frictional loss of bearings and increase their efficiency and reliability. Bearings that are advantageous for high-speed operation are magnetic bearings that do not require lubricants, have no friction loss, and have low maintenance. However, magnetic bearings have disadvantages such as high cost and difficulty in miniaturization. In this paper, a stator with a separated teeth structure was used to compensate for these disadvantages. Using this, a model with miniaturization, light weight, and high manufacturability was proposed. The model name proposed in this study is called the STMB (separated teeth magnetic bearing). There are also disadvantages of the STMB model proposed in this paper. A model that compensates for this drawback is called the HSTMB (hybrid separated teeth magnetic bearing). The HSTMB reduces the weight by removing the back yoke of the stator and has advantages of a high filling rate and high productivity in the form of a module. As a result, high productivity, light weight, and high performance are possible when the HSTMB is applied, which was proven through FEA (finite element analysis).

Details

Language :
English
ISSN :
19961073
Volume :
16
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.410ac79caf4039a258a637b95d2fbf
Document Type :
article
Full Text :
https://doi.org/10.3390/en16073136