Back to Search
Start Over
Sensitivity Improvement of a Fully Symmetric Vertical Hall Device Fabricated in 0.18 μm Low-Voltage CMOS Technology
- Source :
- IEEE Journal of the Electron Devices Society, Vol 9, Pp 820-826 (2021)
- Publication Year :
- 2021
- Publisher :
- IEEE, 2021.
-
Abstract
- This paper proposes a new implementation method to significantly improve the magnetic sensitivity of a fully symmetric vertical Hall device (FSVHD) based on low-voltage CMOS technology. The FSVHD consists of four identical three-contact vertical Hall elements (3CVHE) and each 3CVHE is located in a low-doped deep n-well. The terminals of the 3CVHE are $\text{n}^{+}$ implanted in an n-well and a $\text{p}^{+}$ implantation in a p-well is performed to act as a trench between two adjacent $\text{n}^{+}$ contacts, enabling Hall current flowing deeply for sensitivity improvement. The influence of the geometry sizes on magnetic sensitivity is exploited utilizing TCAD simulation to obtain the optimized device structure in a $0.18~\mu\text{m}$ CMOS standard technology. The experimental results reveal that the proposed FSVHD with a $\text{p}^{+}$ /p-well trench can attain an improved voltage-related sensitivity of 8.4 mV/VT, which is about 70% higher than that of a conventional FSVHD without a trench in the same CMOS fabrication process, while offset and noise are not degraded. The proposed $\text{p}^{+}$ /p-well implantation trench is a good solution to enhance the sensitivity of a low-voltage CMOS VHD with a low manufacturing cost.
Details
- Language :
- English
- ISSN :
- 21686734
- Volume :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Journal of the Electron Devices Society
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.40f36bcc7bd4345b1607d9bd5abcbc5
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/JEDS.2021.3111687