Back to Search Start Over

Chemical Constituents, Antioxidant, and α-Glucosidase Inhibitory Activities of Different Fermented Gynostemma Pentaphyllum Leaves and Untargeted Metabolomic Measurement of the Metabolite Variation

Authors :
Xuechun Zhang
Shi Li
Zhibin Zhang
Kin Weng Kong
Zhenxing Wang
Xiahong He
Source :
Antioxidants, Vol 12, Iss 8, p 1505 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

To assess the effects of microbial fermentation on Gynostemma pentaphyllum leaves (GPL), four probiotics were used to ferment GPL (FGPL) for 7 days. At different stages of fermentation, changes in the active components and biological activities of FGPL were determined. The findings suggest that short-term fermentation with probiotics can enhance both the content and bioactivity of active components in GPL. However, prolonged fermentation may lead to a decline in these aspects. Among them, the best effect was observed with SWFU D16 fermentation for 2 days. This significantly improved the total phenolic and total flavonoid content, antioxidant capacity, and inhibitory ability against α-glucosidase activity with an increase of 28%, 114.82%, 7.42%, and 31.8%, respectively. The high-performance liquid chromatography (HPLC) analysis results also supported this trend. Untargeted metabolomics analysis revealed metabolite changes between GPL and FGPL and the key metabolites associated with these functional activities. These key metabolites are mainly organic acids, flavonoids, carbohydrates, terpenoids, and other substances. KEGG analysis demonstrated that microbial metabolism in diverse environments and carbon metabolism were the most significantly enriched pathways. Among them, 3-(3-hydroxyphenyl) propanoic acid, d-glucose, gallic acid, gluconic acid, l-lactic acid, and l-malic acid were mostly involved in the microbial metabolism of diverse environmental pathways. In contrast, D-glucose, gluconic acid, and l-malic acid were mainly related to the carbon metabolism pathway. This study revealed the positive effect of probiotic fermentation on GPL and its potential metabolism mechanism, which could provide supporting data for further research.

Details

Language :
English
ISSN :
20763921
Volume :
12
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Antioxidants
Publication Type :
Academic Journal
Accession number :
edsdoj.4080dfd0dd6423ab4e51bc37f1c8cce
Document Type :
article
Full Text :
https://doi.org/10.3390/antiox12081505