Back to Search Start Over

Measurement of solid size in early-stage lung adenocarcinoma by virtual 3D thin-section CT applied artificial intelligence

Authors :
Shingo Iwano
Shinichiro Kamiya
Rintaro Ito
Akira Kudo
Yoshiro Kitamura
Keigo Nakamura
Shinji Naganawa
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract An artificial intelligence (AI) system that reconstructs virtual 3D thin-section CT (TSCT) images from conventional CT images by applying deep learning was developed. The aim of this study was to investigate whether virtual and real TSCT could measure the solid size of early-stage lung adenocarcinoma. The pair of original thin-CT and simulated thick-CT from the training data with TSCT images (thickness, 0.5–1.0 mm) of 2700 pulmonary nodules were used to train the thin-CT generator in the generative adversarial network (GAN) framework and develop a virtual TSCT AI system. For validation, CT images of 93 stage 0–I lung adenocarcinomas were collected, and virtual TSCTs were reconstructed from conventional 5-mm thick-CT images using the AI system. Two radiologists measured and compared the solid size of tumors on conventional CT and virtual and real TSCT. The agreement between the two observers showed an almost perfect agreement on the virtual TSCT for solid size measurements (intraclass correlation coefficient = 0.967, P

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.403657f260dd45b79f36dd16d1a23ede
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-48755-5