Back to Search Start Over

Validation and accommodation of vortex wake codes for wind turbine design load calculations

Authors :
K. Boorsma
F. Wenz
K. Lindenburg
M. Aman
M. Kloosterman
Source :
Wind Energy Science, Vol 5, Pp 699-719 (2020)
Publication Year :
2020
Publisher :
Copernicus Publications, 2020.

Abstract

The computational effort for wind turbine design load calculations is more extreme than it is for other applications (e.g., aerospace), which necessitates the use of efficient but low-fidelity models. Traditionally the blade element momentum (BEM) method is used to resolve the rotor aerodynamic loads for this purpose, as this method is fast and robust. With the current trend of increasing rotor size, and consequently large and flexible blades, a need has risen for a more accurate prediction of rotor aerodynamics. Previous work has demonstrated large improvement potential in terms of fatigue load predictions using vortex wake models together with a manageable penalty in computational effort. The present publication has contributed towards making vortex wake models ready for application to certification load calculations. The observed reduction in flapwise blade root moment fatigue loading using vortex wake models instead of the blade element momentum (BEM) method from previous publications has been verified using computational fluid dynamics (CFD) simulations. A validation effort against a long-term field measurement campaign featuring 2.5 MW turbines has also confirmed the improved prediction of unsteady load characteristics by vortex wake models against BEM-based models in terms of fatigue loading. New light has been shed on the cause for the observed differences and several model improvements have been developed, both to reduce the computational effort of vortex wake simulations and to make BEM models more accurate. Scoping analyses for an entire fatigue load set have revealed the overall fatigue reduction may be up to 5 % for the AVATAR 10 MW rotor using a vortex wake rather than a BEM-based code.

Subjects

Subjects :
Renewable energy sources
TJ807-830

Details

Language :
English
ISSN :
23667443 and 23667451
Volume :
5
Database :
Directory of Open Access Journals
Journal :
Wind Energy Science
Publication Type :
Academic Journal
Accession number :
edsdoj.400e5d76f306451db6d7128ab5520920
Document Type :
article
Full Text :
https://doi.org/10.5194/wes-5-699-2020