Back to Search Start Over

Estimation of changes in runoff and its sources in response to future climate change in a critical zone of the Karakoram mountainous region, Pakistan in the near and far future

Authors :
Muhammad Adnan
Shiyin Liu
Muhammad Saifullah
Mudassar Iqbal
Qaisar Saddique
Waqas Ul Hussan
Yasir Latif
Source :
Geomatics, Natural Hazards & Risk, Vol 15, Iss 1 (2024)
Publication Year :
2024
Publisher :
Taylor & Francis Group, 2024.

Abstract

AbstractThe inconsistent pattern of precipitation, a shift in the seasonality of river flows, and the early onset of snow and glacier melt in recent decades across river basins of High Mountain Asia (HMA) has compelled us to further investigate future variations in sources of runoff under projected climate change scenarios. This will help in determining the timing and magnitude of runoff components and this will help in management of future water resources. The current study employed the University of British Columbia Watershed Model (UBC WM) to estimate the spatiotemporal variations in simulated runoff components (i.e. snowmelt, glacier melt, rainfall-runoff, and baseflow) and their relative contribution to total runoff of Gilgit River regarding the baseline period (1981–2010) in near (2021–2050) and far future (2071–2100) under low (SSP1), medium (SSP2) and high (SSP5) emission scenarios. A significant increase in the magnitude of mean annual temperature and precipitation is expected in the near future (2021–2050) than far future (2071–2100) under most SSPs. Moreover, high-altitude stations of the Gilgit River basin are expected to experience more warming in the near and far future than low altitudes under all SSPs. On average, regarding the baseline period, the simulated runoff is projected to increase in the near (27%, 30%, and 33%) and far future (30%, 53%, and 91%) under SSP1, SSP2, and SSP5, respectively. Moreover, an early onset of snow/glacier melting is predicted in the far future due to an increase in summer air temperature and a decline in winter (DJF) precipitation. Besides, the rise in high altitude temperature is expected to cause the melting of snow/glaciers even above 6000 m elevation in the far future.

Details

Language :
English
ISSN :
19475705 and 19475713
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Geomatics, Natural Hazards & Risk
Publication Type :
Academic Journal
Accession number :
edsdoj.3fef7437b8f148cfaee6133b2574205f
Document Type :
article
Full Text :
https://doi.org/10.1080/19475705.2023.2291330