Back to Search Start Over

Automated diagnosis and prognosis of COVID-19 pneumonia from initial ER chest X-rays using deep learning

Authors :
Jordan H. Chamberlin
Gilberto Aquino
Sophia Nance
Andrew Wortham
Nathan Leaphart
Namrata Paladugu
Sean Brady
Henry Baird
Matthew Fiegel
Logan Fitzpatrick
Madison Kocher
Florin Ghesu
Awais Mansoor
Philipp Hoelzer
Mathis Zimmermann
W. Ennis James
D. Jameson Dennis
Brian A. Houston
Ismail M. Kabakus
Dhiraj Baruah
U. Joseph Schoepf
Jeremy R. Burt
Source :
BMC Infectious Diseases, Vol 22, Iss 1, Pp 1-13 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background Airspace disease as seen on chest X-rays is an important point in triage for patients initially presenting to the emergency department with suspected COVID-19 infection. The purpose of this study is to evaluate a previously trained interpretable deep learning algorithm for the diagnosis and prognosis of COVID-19 pneumonia from chest X-rays obtained in the ED. Methods This retrospective study included 2456 (50% RT-PCR positive for COVID-19) adult patients who received both a chest X-ray and SARS-CoV-2 RT-PCR test from January 2020 to March of 2021 in the emergency department at a single U.S. institution. A total of 2000 patients were included as an additional training cohort and 456 patients in the randomized internal holdout testing cohort for a previously trained Siemens AI-Radiology Companion deep learning convolutional neural network algorithm. Three cardiothoracic fellowship-trained radiologists systematically evaluated each chest X-ray and generated an airspace disease area-based severity score which was compared against the same score produced by artificial intelligence. The interobserver agreement, diagnostic accuracy, and predictive capability for inpatient outcomes were assessed. Principal statistical tests used in this study include both univariate and multivariate logistic regression. Results Overall ICC was 0.820 (95% CI 0.790–0.840). The diagnostic AUC for SARS-CoV-2 RT-PCR positivity was 0.890 (95% CI 0.861–0.920) for the neural network and 0.936 (95% CI 0.918–0.960) for radiologists. Airspace opacities score by AI alone predicted ICU admission (AUC = 0.870) and mortality (0.829) in all patients. Addition of age and BMI into a multivariate log model improved mortality prediction (AUC = 0.906). Conclusion The deep learning algorithm provides an accurate and interpretable assessment of the disease burden in COVID-19 pneumonia on chest radiographs. The reported severity scores correlate with expert assessment and accurately predicts important clinical outcomes. The algorithm contributes additional prognostic information not currently incorporated into patient management.

Details

Language :
English
ISSN :
14712334 and 55385958
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Infectious Diseases
Publication Type :
Academic Journal
Accession number :
edsdoj.3fd2faca9fd5488da2b5538595823dca
Document Type :
article
Full Text :
https://doi.org/10.1186/s12879-022-07617-7