Back to Search Start Over

Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential

Authors :
Amelie Perron
Hiroki Mutoh
Walther Akemann
Sunita Ghimire
Dimitar Dimitrov
Yuka Iwamoto
Thomas Knopfel
Source :
Frontiers in Molecular Neuroscience, Vol 2 (2009)
Publication Year :
2009
Publisher :
Frontiers Media S.A., 2009.

Abstract

Over the last decade, optical neuroimaging methods have been enriched by engineered biosensors derived from fluorescent protein (FP) reporters fused to protein detectors that convert physiological signals into changes of intrinsic FP fluorescence. These FP-based indicators are genetically encoded, and hence targetable to specific cell populations within networks of heterologous cell types. Among this class of biosensors, the development of optical probes for membrane potential is both highly desirable and challenging. A suitable FP voltage sensor would indeed be a valuable tool for monitoring the activity of thousands of individual neurons simultaneously in a non-invasive manner. Previous prototypic genetically-encoded FP voltage indicators achieved a proof of principle but also highlighted several difficulties such as poor cell surface targeting and slow kinetics. Recently, we developed a new series of FRET-based Voltage-Sensitive Fluorescent Proteins (VSFPs), referred to as VSFP2s, with efficient targeting to the plasma membrane and high responsiveness to membrane potential signaling in excitable cells. In addition to these FRET-based voltage sensors, we also generated a third series of probes consisting of single FPs with response kinetics suitable for the optical imaging of fast neuronal signals. These newly available genetically-encoded reporters for membrane potential will be instrumental for future experimental approaches directed toward the understanding of neuronal network dynamics and information processing in the brain. Here, we review the development and current status of these novel fluorescent probes.

Details

Language :
English
ISSN :
16625099
Volume :
2
Database :
Directory of Open Access Journals
Journal :
Frontiers in Molecular Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.3fa0b365a9ac4cada6dcabe5f8ded733
Document Type :
article
Full Text :
https://doi.org/10.3389/neuro.02.005.2009