Back to Search Start Over

A Modified Algorithms for New Krasnoselskii's Type for Strongly Monotone and Lipschitz Mappings

Authors :
Furmose Mendy
John T Mendy
Source :
European Journal of Mathematical Analysis, Vol 3, Pp 18-18 (2023)
Publication Year :
2023
Publisher :
Ada Academica, 2023.

Abstract

Let E be a 2 uniformly smooth and convex real Banach space and let a mapping A: E → E∗ be lipschitz and strongly monotone such that A−1(0)≠∅. For an arbitrary ({x1}, {y1})∈E, we define the sequences {xn} and {yn} by yn = xn − θnJ−1(Axn), n≥1 xn+1 = yn − λnJ−1(Ayn), n≥1 where λn and θn are positive real number and J is the duality mapping of E. Letting (λn, θn)∈(0, 1), then xn and yn converges strongly to ρ∗, a unique solution of the equation Ax = 0. We also applied our algorithm in convex minimization and also proved the convergence of it in Lp, lp or Wm,p. At the end we proposed the algorithm of it in Lp(Ω) and its inverse Lq(Ω).

Details

Language :
English
ISSN :
27333957
Volume :
3
Database :
Directory of Open Access Journals
Journal :
European Journal of Mathematical Analysis
Publication Type :
Academic Journal
Accession number :
edsdoj.3f73ab8d1dda4618a447321f5624f328
Document Type :
article
Full Text :
https://doi.org/10.28924/ada/ma.3.18