Back to Search
Start Over
A Modified Algorithms for New Krasnoselskii's Type for Strongly Monotone and Lipschitz Mappings
- Source :
- European Journal of Mathematical Analysis, Vol 3, Pp 18-18 (2023)
- Publication Year :
- 2023
- Publisher :
- Ada Academica, 2023.
-
Abstract
- Let E be a 2 uniformly smooth and convex real Banach space and let a mapping A: E → E∗ be lipschitz and strongly monotone such that A−1(0)≠∅. For an arbitrary ({x1}, {y1})∈E, we define the sequences {xn} and {yn} by yn = xn − θnJ−1(Axn), n≥1 xn+1 = yn − λnJ−1(Ayn), n≥1 where λn and θn are positive real number and J is the duality mapping of E. Letting (λn, θn)∈(0, 1), then xn and yn converges strongly to ρ∗, a unique solution of the equation Ax = 0. We also applied our algorithm in convex minimization and also proved the convergence of it in Lp, lp or Wm,p. At the end we proposed the algorithm of it in Lp(Ω) and its inverse Lq(Ω).
- Subjects :
- Analysis
QA299.6-433
Applied mathematics. Quantitative methods
T57-57.97
Subjects
Details
- Language :
- English
- ISSN :
- 27333957
- Volume :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- European Journal of Mathematical Analysis
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3f73ab8d1dda4618a447321f5624f328
- Document Type :
- article
- Full Text :
- https://doi.org/10.28924/ada/ma.3.18