Back to Search Start Over

Coupling of nanostraws with diverse physicochemical perforation strategies for intracellular DNA delivery

Authors :
Juan Jiang
Jing Liu
Xinmin Liu
Xingyuan Xu
Zhengjie Liu
Shuang Huang
Xinshuo Huang
Chuanjie Yao
Xiafeng Wang
Yixin Chen
Hui-jiuan Chen
Ji Wang
Xi Xie
Source :
Journal of Nanobiotechnology, Vol 22, Iss 1, Pp 1-20 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Effective intracellular DNA transfection is imperative for cell-based therapy and gene therapy. Conventional gene transfection methods, including biochemical carriers, physical electroporation and microinjection, face challenges such as cell type dependency, low efficiency, safety concerns, and technical complexity. Nanoneedle arrays have emerged as a promising avenue for improving cellular nucleic acid delivery through direct penetration of the cell membrane, bypassing endocytosis and endosome escape processes. Nanostraws (NS), characterized by their hollow tubular structure, offer the advantage of flexible solution delivery compared to solid nanoneedles. However, NS struggle to stably self-penetrate the cell membrane, resulting in limited delivery efficiency. Coupling with extra physiochemical perforation strategies is a viable approach to improve their performance. This study systematically compared the efficiency of NS coupled with polyethylenimine (PEI) chemical modification, mechanical force, photothermal effect, and electric field on cell membrane perforation and DNA transfection. The results indicate that coupling NS with PEI modification, mechanical force, photothermal effects provide limited enhancement effects. In contrast, NS-electric field coupling significantly improves intracellular DNA transfection efficiency. This work demonstrates that NS serve as a versatile platform capable of integrating various physicochemical strategies, while electric field coupling stands out as a form worthy of primary consideration for efficient DNA transfection.

Details

Language :
English
ISSN :
14773155
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.3f62cb64b45b4b829f03bb019b7c044a
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-024-02392-w