Back to Search
Start Over
OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) modulates the stemness feature, chemoresistance, and epithelial-mesenchymal transition of colon cancer via regulating GINS complex subunit 1 (GINS1) expression
- Source :
- Cell Communication and Signaling, Vol 22, Iss 1, Pp 1-23 (2024)
- Publication Year :
- 2024
- Publisher :
- BMC, 2024.
-
Abstract
- Abstract Background Colon cancer is one of the most prevalent tumors in the digestive tract, and its stemness feature significantly contribute to chemoresistance, promote the epithelial-mesenchymal transition (EMT) process, and ultimately lead to tumor metastasis. Therefore, it is imperative for researchers to elucidate the molecular mechanisms underlying the enhancement of stemness feature, chemoresistance, and EMT in colon cancer. Methods Sphere-formation and western blotting assays were conducted to assess the stemness feature. Edu, flow cytometry, and cell viability assays were employed to evaluate the chemoresistance. Immunofluorescence and western blotting assays were utilized to detect EMT. Immunoprecipitation, ubiquitination, agarose gel electrophoresis, chromatin immunoprecipitation followed by quantitative PCR (chip-qPCR), and dual luciferase reporter gene assays were employed for mechanistic investigations. Results We demonstrated a markedly higher expression level of OTUB2 in colon cancer tissues compared to adjacent tissues. Furthermore, elevated OTUB2 expression was closely associated with poor prognosis and distant tumor metastasis. Functional experiments revealed that knockdown of OTUB2 attenuated stemness feature of colon cancer, enhanced its sensitivity to oxaliplatin, inhibited its EMT process, ultimately reduced the ability of tumor metastasis. Conversely, overexpression of OTUB2 exerted opposite effects. Mechanistically, we identified OTUB2 as a deubiquitinase for SP1 protein which bound specifically to SP1 protein, thereby inhibiting K48 ubiquitination of SP1 protein. The SP1 protein functioned as a transcription factor for the GINS1, exerting its regulatory effect by binding to the 1822–1830 region of the GINS1 promoter and enhancing its transcriptional activity. Ultimately, alterations in GINS1 expression directly regulated stemness feature, chemosensitivity, and EMT progression in colon cancer. Conclusion Collectively, the OTUB2/SP1/GINS1 axis played a pivotal role in driving stemness feature, chemoresistance, and EMT in colon cancer. These results shed new light on understanding chemoresistance and metastasis mechanisms involved in colon cancer.
- Subjects :
- OTUB2
GINS1
Stemness feature
Chemoresistance
EMT
Medicine
Cytology
QH573-671
Subjects
Details
- Language :
- English
- ISSN :
- 1478811X
- Volume :
- 22
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Cell Communication and Signaling
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3f620638432e4b169bee925ab0459aaf
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12964-024-01789-2