Back to Search Start Over

High density lipoprotein (HDL) promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells.

Authors :
Qichun Zhang
Yun Zhang
Haihua Feng
Rui Guo
Lai Jin
Rong Wan
Lina Wang
Cheng Chen
Shengnan Li
Source :
PLoS ONE, Vol 6, Iss 8, p e23556 (2011)
Publication Year :
2011
Publisher :
Public Library of Science (PLoS), 2011.

Abstract

BACKGROUND: High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS: Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3)H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells. CONCLUSIONS: HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
6
Issue :
8
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.3ee235b052684f2e81444894f4c3fe27
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0023556