Back to Search Start Over

Photo-Stimuli-Responsive CuS Nanomaterials as Cutting-Edge Platform Materials for Antibacterial Applications

Authors :
Atanu Naskar
Kwang-sun Kim
Source :
Pharmaceutics, Vol 14, Iss 11, p 2343 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Photo-stimuli-responsive therapeutic nanomaterials have gained widespread attention as frontline materials for biomedical applications. The photoactivation strategies are classified as single-modality (based on either reactive oxygen species (ROS)-based photodynamic therapy (PDT), hyperthermia-based photothermal therapy (PTT)), or dual-modality (which combines PDT and PTT). Due to its minimal invasiveness, phototherapy has been extensively applied as an efficient therapeutic platform for many diseases, including skin cancers. However, extensive implementation of phototherapy to address the emergence of multidrug-resistant (MDR) bacterial infections remains challenging. This review focuses on copper sulfide (CuS) nanomaterials as efficient and cost-effective PDT and PTT therapeutic nanomaterials with antibacterial activity. The features and merits of CuS nanomaterials as therapeutics are compared to those of other nanomaterials. Control of the dimensions and morphological complexity of CuS nanomaterials through judicious synthesis is then introduced. Both the in vitro antibacterial activity and the in vivo therapeutic effect of CuS nanomaterials and derivative nanocomposites composed of 2D nanomaterials, polymers, metals, metal oxides, and proteins are described in detail. Finally, the perspective of photo-stimuli-responsive CuS nanomaterials for future clinical antibacterial applications is highlighted. This review illustrates that CuS nanomaterials are highly effective, low-toxic, and environmentally friendly antibacterial agents or platform nanomaterials for combatting MDR bacterial infections.

Details

Language :
English
ISSN :
19994923
Volume :
14
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Pharmaceutics
Publication Type :
Academic Journal
Accession number :
edsdoj.3ecd4bbc22354571925519946c48bc09
Document Type :
article
Full Text :
https://doi.org/10.3390/pharmaceutics14112343