Back to Search
Start Over
Vitamin E supplementation prevents obesogenic diet-induced developmental abnormalities in SR-B1 deficient embryos
- Source :
- Frontiers in Cell and Developmental Biology, Vol 12 (2024)
- Publication Year :
- 2024
- Publisher :
- Frontiers Media S.A., 2024.
-
Abstract
- IntroductionGenetic and environmental factors influence the risk of neural tube defects (NTD), congenital malformations characterized by abnormal brain and spine formation. Mouse embryos deficient in Scavenger Receptor Class B Type 1 (SR-B1), which is involved in the bidirectional transfer of lipids between lipoproteins and cells, exhibit a high prevalence of exencephaly, preventable by maternal vitamin E supplementation. SR-B1 knock-out (KO) embryos are severely deficient in vitamin E and show elevated reactive oxygen species levels during neurulation.MethodsWe fed SR-B1 heterozygous female mice a high-fat/high-sugar (HFHS) diet and evaluated the vitamin E and oxidative status in dams and embryos from heterozygous intercrosses. We also determined the incidence of NTD.Results and discussionHFHS-fed SR-B1 HET females exhibited altered glucose metabolism and excess circulating lipids, along with a higher incidence of embryos with developmental delay and NTD. Vitamin E supplementation partially mitigated HFHS-induced maternal metabolic abnormalities and completely prevented embryonic malformations, likely through indirect mechanisms involving the reduction of oxidative stress and improved lipid handling by the parietal yolk sac.
Details
- Language :
- English
- ISSN :
- 2296634X
- Volume :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Cell and Developmental Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.3e822d21847343f4b9354beca94b7c20
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fcell.2024.1460697