Back to Search Start Over

MiR-221-3p/222-3p Cluster Expression in Human Adipose Tissue Is Related to Obesity and Type 2 Diabetes

Authors :
Adriana-Mariel Gentile
Said Lhamyani
María Mengual-Mesa
Eduardo García-Fuentes
Francisco-Javier Bermúdez-Silva
Gemma Rojo-Martínez
Mercedes Clemente-Postigo
Alberto Rodriguez-Cañete
Gabriel Olveira
Rajaa El Bekay
Source :
International Journal of Molecular Sciences, Vol 24, Iss 24, p 17449 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The progression of obesity and type 2 diabetes (T2D) is intricately linked with adipose tissue (AT) angiogenesis. Despite an established network of microRNAs (miRNAs) regulating AT function, the specific role of angiogenic miRNAs remains less understood. The miR-221/222 cluster has recently emerged as being associated with antiangiogenic activity. However, no studies have explored its role in human AT amidst the concurrent development of obesity and T2D. Therefore, this study aims to investigate the association between the miR-221-3p/222-3p cluster in human AT and its regulatory network with obesity and T2D. MiR-221-3p/222-3p and their target gene (TG) expression levels were quantified through qPCR in visceral (VAT) and subcutaneous (SAT) AT from patients (n = 33) categorized based on BMI as normoweight (NW) and obese (OB) and by glycemic status as normoglycemic (NG) and type 2 diabetic (T2D) subjects. In silico analyses of miR-221-3p/222-3p and their TGs were conducted to identify pertinent signaling pathways. The results of a multivariate analysis, considering the simultaneous expression of miR-221-3p and miR-222-3p as dependent variables, revealed statistically significant distinctions when accounting for variables such as tissue depot, obesity, sex, and T2D as independent factors. Furthermore, both miRNAs and their TGs exhibited differential expression patterns based on obesity severity, glycemic status, sex, and type of AT depot. Our in silico analysis indicated that miR-221-3p/222-3p cluster TGs predominantly participate in angiogenesis, WNT signaling, and apoptosis pathways. In conclusion, these findings underscore a promising avenue for future research, emphasizing the miR-221-3p/222-3p cluster and its associated regulatory networks as potential targets for addressing obesity and related metabolic disorders.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
24
Issue :
24
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.3e61bde20b4c4667a89ccb9d9acb24a2
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms242417449