Back to Search Start Over

Data assimilation and agent-based modelling: towards the incorporation of categorical agent parameters [version 2; peer review: 2 approved]

Authors :
Vijay Kumar
Alison Heppenstall
Nick Malleson
Le-Minh Kieu
Jonathan A Ward
Patricia Ternes
Source :
Open Research Europe, Vol 1 (2022)
Publication Year :
2022
Publisher :
F1000 Research Ltd, 2022.

Abstract

This paper explores the use of a particle filter—a data assimilation method—to incorporate real-time data into an agent-based model. We apply the method to a simulation of real pedestrians moving through the concourse of Grand Central Terminal in New York City (USA). The results show that the particle filter does not perform well due to (i) the unpredictable behaviour of some pedestrians and (ii) because the filter does not optimise the categorical agent parameters that are characteristic of this type of model. This problem only arises because the experiments use real-world pedestrian movement data, rather than simulated, hypothetical data, as is more common. We point to a potential solution that involves resampling some of the variables in a particle, such as the locations of the agents in space, but keeps other variables such as the agents’ choice of destination. This research illustrates the importance of including real-world data and provides a proof of concept for the application of an improved particle filter to an agent-based model. The obstacles and solutions discussed have important implications for future work that is focused on building large-scale real-time agent-based models.

Details

Language :
English
ISSN :
27325121
Volume :
1
Database :
Directory of Open Access Journals
Journal :
Open Research Europe
Publication Type :
Academic Journal
Accession number :
edsdoj.3e45988b0a94007b2ea5484abc89106
Document Type :
article
Full Text :
https://doi.org/10.12688/openreseurope.14144.2