Back to Search Start Over

The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis

Authors :
Zhouqian Jiang
Lichan Tu
Weifei Yang
Yifeng Zhang
Tianyuan Hu
Baowei Ma
Yun Lu
Xiuming Cui
Jie Gao
Xiaoyi Wu
Yuru Tong
Jiawei Zhou
Yadi Song
Yuan Liu
Nan Liu
Luqi Huang
Wei Gao
Source :
Plant Communications, Vol 2, Iss 1, Pp 100113- (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Panax notoginseng, a perennial herb of the genus Panax in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of P. notoginseng, with a genome size up to 2.66 Gb and a contig N50 of 1.12 Mb, produced with third-generation PacBio sequencing technology. This is the first chromosome-level genome assembly for the genus Panax. Through genome evolution analysis, we explored phylogenetic and whole-genome duplication events and examined their impact on saponin biosynthesis. We performed a detailed transcriptional analysis of P. notoginseng and explored gene-level mechanisms that regulate the formation of characteristic tubercles. Next, we studied the biosynthesis and regulation of saponins at temporal and spatial levels. We combined multi-omics data to identify genes that encode key enzymes in the P. notoginseng terpenoid biosynthetic pathway. Finally, we identified five glycosyltransferase genes whose products catalyzed the formation of different ginsenosides in P. notoginseng. The genetic information obtained in this study provides a resource for further exploration of the growth characteristics, cultivation, breeding, and saponin biosynthesis of P. notoginseng.

Details

Language :
English
ISSN :
25903462
Volume :
2
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Plant Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.3e3e8893f888458cbb786189c636c23f
Document Type :
article
Full Text :
https://doi.org/10.1016/j.xplc.2020.100113